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Abstract

We consider the spectrum of the quantum asymmetric top. Unlike in the case
when two or three moments of inertia are equal, when the moments of inertia
are distinct all degeneracy in the spectrum of the operator is removed. We
derive inequalities for the spectra based on recent results on the interlacing of
Van Vleck zeros.
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Mathematics Subject Classification: 81Q10, 35P15

1. Introduction

Given any three positive numbers α1, α2, α3, the quantum top is defined as the operator

Lα := α1L
2
x + α2L

2
y + α3L

2
z, (1.1)

where Lx,Ly and Lz are the components of the angular momentum, i.e.

Lx = −i(y∂z − z∂y), Ly = −i(z∂x − x∂z), Lz = −i(x∂y − y∂x).

The quantum spherical top corresponds to the case α1 = α2 = α3 and the quantum symmetrical
top to the case α1 = α2 �= α3. When all three α’s are distinct, Lα is known as the quantum
asymmetric top or the quantum Euler top.

Since Lα and �S2 , the constant curvature Laplacian on S2, are commuting, self-adjoint
elliptic operators on L2(S2), they possess a Hilbert basis of joint eigenfunctions. In the case of
the spherical and symmetrical tops, the joint eigenfunctions are given by the standard spherical
harmonics

Ym
k (θ, φ) = P m

k (cos θ) eimφ, |m| � k, k ∈ N,

where P m
k is the associated Legendre function of the first kind. The corresponding eigenvalues

are given by α1k(k+1) in the case of the spherical top, and by α1k(k+1)+(α3−α1)m
2, |m| � k

for the symmetrical top. For each k there are 2k + 1 harmonics, so the spherical top has a
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2k + 1 degeneracy for each eigenvalue and the symmetrical top has a double degeneracy for
each nonzero eigenvalue.

However, the situation for the asymmetric top is not as simple. In this case the degeneracy
of the eigenvalues is removed completely, and as noted by Landau and Lifshitz [10], the
calculation of the energy levels in a general form is impossible. To obtain a basis of joint
eigenfunctions, it is customary to introduce a new set of coordinates on S2, the sphero-conal or
elliptic coordinates [14]. In terms of these coordinates, one can separate variables to express
the joint eigenfunctions as the product

ψ
γ

k (u1, u2) = φ
γ

k (u1)φ
γ

k (u2),

where the function φ
γ

k is given by

φ
γ

k (x) =
3∏

j=1

|x − αj |γi/2Pm(x). (1.2)

Here, γ = (γ1, γ2, γ3) is a multi-index with γj ∈ {0, 1} and Pm(x) is a polynomial of degree
m := (k − |γ |)/2. In addition, φ

γ

k (x) is a solution of the Lamé equation:

d2

dx2
φ

γ

k (x) +
1

2

3∑
j=1

1

x − αj

d

dx
φ

γ

k (x) = 1

4

k(k + 1)x − E∏3
j=1(x − αj )

φ
γ

k (x). (1.3)

Originally, these observations were made by Kramers and Ittman [8, 9]; we refer the reader to
[1] for more detailed derivations of these facts. Accordingly, the spherical harmonics ψ

γ

k are
known as Lamé harmonics. It is well known that for each k ∈ N, there exist 2k + 1 linearly
independent Lamé harmonics of degree k, so the ψ

γ

k form a basis of spherical harmonics.
The separation constant E appearing on the right-hand side of (1.3) is the eigenvalue of

Lα associated with the eigenfunction ψ
γ

k . It is well known that the eigenvalues are real and
simple. For each k, it is customary to divide the spectrum σk of Lα into four disjoint subsets

σk =
{

σ
0,0,0
k ∪ σ

1,1,0
k ∪ σ

1,0,1
k ∪ σ

0,1,1
k if k is even

σ
1,0,0
k ∪ σ

1,0,0
k ∪ σ

0,0,1
k ∪ σ

1,1,1
k if k is odd

where σ
γ

k is the set of all eigenvalues of Lα corresponding to eigenfunctions of the form ψ
γ

k .
The cardinality of each subset is equal to m + 1, where m is the degree of the polynomial Pm

defined above. More precisely, we have∣∣σ 0,0,0
k

∣∣ = k/2 + 1,
∣∣σ 1,0,0

k

∣∣ = ∣∣σ 0,1,0
k

∣∣ = ∣∣σ 0,0,1
k

∣∣ = (k + 1)/2,∣∣σ 1,1,0
k

∣∣ = ∣∣σ 1,0,1
k

∣∣ = ∣∣σ 0,1,1
k

∣∣ = k/2,
∣∣σ 1,1,1

k

∣∣ = (k − 1)/2.

Note that for k even,

|σk| = ∣∣σ 0,0,0
k

∣∣ +
∣∣σ 1,1,0

k

∣∣ +
∣∣σ 1,0,1

k

∣∣ +
∣∣σ 0,1,1

k

∣∣ = 2k + 1

and similarly for k odd. In the following, we denote by E
γ

k,j , j = 1, . . . ,
∣∣σγ

k

∣∣ the ordered
eigenvalues of Lα that belong to σ

γ

k . The main result of this paper is a separation theorem for
the spectrum of Lα .

Theorem 1.1. For every multi-index γ ∈ {0, 1}3, the following inequalities hold:

(i)
E

γ

k+2,j

μ
γ

k+2

<
E

γ

k,j

μ
γ

k

where μ
γ

k = (k − |γ |)(k + |γ | + 1) (1.4)

(ii) E
γ

k,j < E
γ

k+2,j+1 for j = 1, . . . ,
∣∣σγ

k

∣∣. (1.5)

Although there exists an extensive literature on the quantum asymmetric top, as far as we
are aware, these inequalities do not appear anywhere in the literature.
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2. The generalized Lamé equation

The Lamé equation (1.3) is a special case (with ρ1 = ρ2 = ρ3 = 1/2) of the following Heun
equation [4]:

y ′′(x) +
3∑

j=1

ρj

x − αj

y ′(x) = μ(x − ν)∏3
j=1(x − αj )

y(x). (2.1)

Here, we assume that α1 < α2 < α3 and ρj > 0. We will refer to the above equation (2.1) as
the generalized Lamé equation (GLE), although we note that it appears under several different
names in the literature. The GLE plays an important role in the integrability of quantum
systems [7], as well as in electrostatic systems with logarithmic potential [3, 5, 6, 12].

It is well known that for each k ∈ N, there exist exactly k + 1 distinct values of ν for which
(2.1) has a polynomial solution y of degree k. These polynomial solutions are usually referred
to as the Stieltjes polynomials. The corresponding linear polynomials V (x) := μ(x − ν) are
known as Van Vleck polynomials.

In 1898, Van Vleck [13] showed that the zeros ν of V (x) lie inside the interval (α1, α3),
and for each k ∈ N, the k + 1 possible values of ν are distinct. Very few results on the zeros
of V (x) have been obtained since then. One of the most striking results since those of Van
Vleck is the following interlacing property [2]; if we denote by

ν1,k < ν2,k < · · · < νk+1,k

the k + 1 ordered Van Vleck zeros corresponding to Stieltjes polynomials of degree k, then the
following inequalities hold:

ν1,k+1 < ν1,k < ν2,k+1 < · · · < νk+1,k < νk+2,k+1. (2.2)

2.1. Proof of theorem 1.1

Using the interlacing property, it is now easy to prove theorem 1.1. Indeed, substituting the
corresponding Lamé function φ

γ

k (x) from (1.2) into (1.3), then one can verify after some
straightforward computations that the polynomial Pm satisfies the GLE:

d2Pm

dx2
+

3∑
j=1

γj + 1/2

x − αj

dPm

dx
= μ

γ

k x − E + D(α, γ )

4(x − α1)(x − α2)(x − α3)
Pm, (2.3)

where D(α, γ ) is the constant given by

D(α, γ ) = (γ2 + γ3)
2 α1 + (γ1 + γ3)

2 α2 + (γ1 + γ2)
2 α3.

As a consequence of (2.2) applied to the Van Vleck zeros

νj,m = E
γ

k,j − D(α, γ )

μ
γ

k

(j = 1, . . . , m),

we obtain

E
γ

k+2,j − D(α, γ )

μ
γ

k+2

<
E

γ

k,j − D(α, γ )

μ
γ

k

<
E

γ

k+2,j+1 − D(α, γ )

μ
γ

k+2

(2.4)

for j = 1, . . . , m. Theorem 1.1 is then an immediate consequence of these inequalities and
the fact μ

γ

k < μ
γ

k+2.
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Figure 1. Spectra of the quantum top for k = 6 and k = 8 with α1 = 1/2 and α3 = 3/2. The
energy levels of the prolate symmetrical top are at α2 = 1/2 and of the oblate symmetrical top are
at α2 = 3/2. Values of 1/2 < α2 < 3/2 represent the energy levels of the asymmetrical top.
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Figure 2. Scaled spectra of the quantum top. The E
γ

6,j /μ
γ

6 are plotted as dashed curves and the

E
γ

8,j /μ
γ

8 are plotted as solid curves.

2.2. Distribution of the eigenvalues

As mentioned above, Van Vleck [13] showed that the Van Vleck zeros lie in the interval
(α1, α3). Thus each E = E

γ

k,j satisfies

α1(k − |γ |) (k + |γ | + 1) + D(α, γ ) < E < α3(k − |γ |) (k + |γ | + 1) + D(α, γ ).

A straightforward calculation shows that this is equivalent to

α1k(k + 1) + (α2 − α1) (γ1 + γ3)
2 + (α3 − α1) (γ1 + γ2)

2 < E

< α3k(k + 1) − (α3 − α2) (γ1 + γ3)
2 − (α3 − α1) (γ2 + γ3)

2 .
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Thus, in the limiting case α1 = α2 = α3, we recover the fact that the eigenvalues of the
spherical top are α1k(k + 1). As α1, α2, α3 separate the eigenvalues split. We have the
following slight improvement of theorem 2.2 of [1]:

Theorem 2.1. Suppose that 0 < α1 < α2 < α3. The part of the spectrum σk of
−Lα corresponding to the Lamé harmonics of degree k lie inside the interval (α1k(k + 1),

α3k(k + 1)).

The situation is illustrated in figures 1 and 2. Here we fix α1 = 1/2 and α3 = 3/2,
and allow α2 to vary between 1/2 and 3/2. The cases when α2 = 1/2 or 3/2 correspond
to symmetrical tops with prolate or oblate symmetry, respectively [11]. The two kinds of
symmetry depend on whether the moment of inertia of the two equal moments is greater than
or less than the unequal moment. As α2 becomes greater than 1/2 the eigenvalues split and as
α2 approaches 3/2 they coalesce, but at different levels. Figure 1 shows the plots of E = E

γ

k,j

for two fixed values of k, namely k = 6 and k = 8.
In figure 2 we illustrate the interlacing property. Here we plot the scaled values of the

energy E
γ

k,j for k = 6 and k = 8 for the four possible values of γ . When γ = (0, 0, 0),

D(α, γ ) = 0, so the E
γ

6,j

/
μ

γ

6 and E
γ

8,j

/
μ

γ

8 interlace for all values of α such that α1 < α2 < α3

(upper left panel). In the other three cases, the scaled energy levels do not interlace for all α

due to the presence of the nonzero D(α, γ ) term in (2.4).
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